Probabilistic home video structuring: feature selection and performance evaluation
نویسندگان
چکیده
We recently proposed a method to find cluster structure in home videos based on statistical models of visual and temporal features of video segments and sequential binary Bayesian classification. In this paper, we present analysis and improved results on two key issues: feature selection and performance evaluation, using a ten-hour database (30 video clips, 1,075,000 frames). From multiple features and similarity measures, visual features are selected in order to minimize the empirical probability of misclassification. Temporal features are chosen to reflect the patterns existing in both shot and cluster duration and adjacency. Finally, we describe a detailed performance evaluation procedure that includes cluster detection, individual shot-cluster labeling, and prior selection.
منابع مشابه
Assessing Scene Structuring in Consumer Videos
Scene structuring is a video analysis task for which no common evaluation procedures have been fully adopted. In this paper, we present a methodology to evaluate such task in home videos, which takes into account human judgement, and includes a representative corpus, a set of objective performance measures, and an evaluation protocol. The components of our approach are detailed as follows. Firs...
متن کاملNovel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملA Comparative Study of Gender and Age Classification in Speech Signals
Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...
متن کاملDiscrimination of Power Quality Distorted Signals Based on Time-frequency Analysis and Probabilistic Neural Network
Recognition and classification of Power Quality Distorted Signals (PQDSs) in power systems is an essential duty. One of the noteworthy issues in Power Quality Analysis (PQA) is identification of distorted signals using an efficient scheme. This paper recommends a Time–Frequency Analysis (TFA), for extracting features, so-called "hybrid approach", using incorporation of Multi Resolution Analysis...
متن کاملEnsemble Classification and Extended Feature Selection for Credit Card Fraud Detection
Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002